320 lines
9.8 KiB
HLSL

#ifndef __MOTION_BLUR__
#define __MOTION_BLUR__
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
//#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/UnityInput.hlsl"
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl"
TEXTURE2D_X(_MainTex);
TEXTURE2D_X(_MotionVectorTexture);
TEXTURE2D_X(_CameraDepthTexture);
#if UNITY_VERSION <= 202310
SAMPLER(sampler_LinearClamp);
SAMPLER(sampler_PointClamp);
#endif
float4 _MainTex_TexelSize;
float4 _MotionVectorTexture_TexelSize;
// Packed velocity texture (2/10/10/10)
TEXTURE2D_X(_VelocityTex);
float2 _VelocityTex_TexelSize;
// NeighborMax texture
TEXTURE2D_X(_NeighborMaxTex);
float2 _NeighborMaxTex_TexelSize;
// Velocity scale factor
float _VelocityScale;
// TileMax filter parameters
int _TileMaxLoop;
float2 _TileMaxOffs;
// Maximum blur radius (in pixels)
half _MaxBlurRadius;
float _RcpMaxBlurRadius;
// Filter parameters/coefficients
half _LoopCount;
struct AttributesDefault
{
float4 vertex : POSITION;
float2 texcoord : TEXCOORD0;
};
struct VaryingsDefault
{
float4 positionHCS : SV_POSITION;
float2 uv : TEXCOORD0;
};
VaryingsDefault VertDefault(AttributesDefault input)
{
VaryingsDefault output;
output.positionHCS = TransformObjectToHClip(input.vertex.xyz);
output.uv = input.texcoord;
return output;
}
struct VaryingsMultitex
{
float4 pos : SV_POSITION;
float2 uv0 : TEXCOORD0;
float2 uv1 : TEXCOORD1;
};
VaryingsMultitex VertMultitex(AttributesDefault v)
{
VaryingsMultitex o;
o.pos = TransformObjectToHClip(v.vertex.xyz);
o.uv0 = v.texcoord.xy;
o.uv1 = v.texcoord.xy;
#if UNITY_UV_STARTS_AT_TOP
if (_MainTex_TexelSize.y < 0.0)
o.uv1.y = 1.0 - v.texcoord.y;
#endif
return o;
}
// -----------------------------------------------------------------------------
// helper functions
#define UNITY_PI_2 (UNITY_PI * 2.0)
inline half2 MaxV(half2 v1, half2 v2) { return dot(v1, v1) < dot(v2, v2) ? v2 : v1; }
// Interleaved gradient function from Jimenez 2014 http://goo.gl/eomGso
float GradientNoise(float2 uv)
{
uv = floor(uv * _ScreenParams.xy);
float f = dot(float2(0.06711056, 0.00583715), uv);
return frac(52.9829189 * frac(f));
}
// Z buffer depth to linear 0-1 depth
// Handles orthographic projection correctly
float LinearizeDepth(float z)
{
float isOrtho = unity_OrthoParams.w;
float isPers = 1.0 - unity_OrthoParams.w;
z *= _ZBufferParams.x;
return (1.0 - isOrtho * z) / (isPers * z + _ZBufferParams.y);
}
// -----------------------------------------------------------------------------
// Prefilter
// Velocity texture setup
half4 FragVelocitySetup(VaryingsDefault i) : SV_Target
{
// Sample the motion vector.
float2 v = SAMPLE_TEXTURE2D_X(_MotionVectorTexture, sampler_LinearClamp, i.uv).xy;
// Apply the exposure time and convert to the pixel space.
v *= (_VelocityScale * 0.5) * _MotionVectorTexture_TexelSize.zw;
// Clamp the vector with the maximum blur radius.
v /= max(1.0, length(v) * _RcpMaxBlurRadius);
// Sample the depth of the pixel.
half d = LinearizeDepth(SAMPLE_TEXTURE2D_X(_CameraDepthTexture, sampler_PointClamp, i.uv).r);
// Pack into 10/10/10/2 format.
return half4((v * _RcpMaxBlurRadius + 1.0) * 0.5, d, 0.0);
}
// TileMax filter (2 pixel width with normalization)
half4 FragTileMax1(VaryingsDefault i) : SV_Target
{
float4 d = _MainTex_TexelSize.xyxy * float4(-0.5, -0.5, 0.5, 0.5);
half2 v1 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.xy).rg;
half2 v2 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.zy).rg;
half2 v3 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.xw).rg;
half2 v4 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.zw).rg;
v1 = (v1 * 2.0 - 1.0) * _MaxBlurRadius;
v2 = (v2 * 2.0 - 1.0) * _MaxBlurRadius;
v3 = (v3 * 2.0 - 1.0) * _MaxBlurRadius;
v4 = (v4 * 2.0 - 1.0) * _MaxBlurRadius;
return half4(MaxV(MaxV(MaxV(v1, v2), v3), v4), 0.0, 0.0);
}
// TileMax filter (2 pixel width)
half4 FragTileMax2(VaryingsDefault i) : SV_Target
{
float4 d = _MainTex_TexelSize.xyxy * float4(-0.5, -0.5, 0.5, 0.5);
half2 v1 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.xy).rg;
half2 v2 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.zy).rg;
half2 v3 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.xw).rg;
half2 v4 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.zw).rg;
return half4(MaxV(MaxV(MaxV(v1, v2), v3), v4), 0.0, 0.0);
}
// TileMax filter (variable width)
half4 FragTileMaxV(VaryingsDefault i) : SV_Target
{
float2 uv0 = i.uv + _MainTex_TexelSize.xy * _TileMaxOffs.xy;
float2 du = float2(_MainTex_TexelSize.x, 0.0);
float2 dv = float2(0, _MainTex_TexelSize.y);
half2 vo = 0;
UNITY_LOOP
for (int ix = 0; ix < _TileMaxLoop; ix++)
{
UNITY_LOOP
for (int iy = 0; iy < _TileMaxLoop; iy++)
{
float2 uv = uv0 + du * ix + dv * iy;
vo = MaxV(vo, SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, uv).rg);
}
}
return half4(vo, 0.0, 0.0);
}
// NeighborMax filter
half4 FragNeighborMax(VaryingsDefault i) : SV_Target
{
const half cw = 1.01; // Center weight tweak
float4 d = _MainTex_TexelSize.xyxy * float4(1.0, 1.0, -1.0, 0.0);
half2 v1 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv - d.xy).rg;
half2 v2 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv - d.wy).rg;
half2 v3 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv - d.zy).rg;
half2 v4 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv - d.xw).rg;
half2 v5 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv).rg * cw;
half2 v6 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.xw).rg;
half2 v7 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.zy).rg;
half2 v8 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.wy).rg;
half2 v9 = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv + d.xy).rg;
half2 va = MaxV(v1, MaxV(v2, v3));
half2 vb = MaxV(v4, MaxV(v5, v6));
half2 vc = MaxV(v7, MaxV(v8, v9));
return half4(MaxV(va, MaxV(vb, vc)) * (1.0 / cw), 0.0, 0.0);
}
// -----------------------------------------------------------------------------
// Reconstruction
// Returns true or false with a given interval.
bool Interval(half phase, half interval)
{
return frac(phase / interval) > 0.499;
}
// Jitter function for tile lookup
float2 JitterTile(float2 uv)
{
float rx, ry;
sincos(GradientNoise(uv + float2(2.0, 0.0)) * PI * 2.0, ry, rx);
return float2(rx, ry) * _NeighborMaxTex_TexelSize.xy * 0.25;
}
// Velocity sampling function
half3 SampleVelocity(float2 uv)
{
half3 v = SAMPLE_TEXTURE2D_X_LOD(_VelocityTex, sampler_LinearClamp, uv, 0).xyz;
return half3((v.xy * 2.0 - 1.0) * _MaxBlurRadius, v.z);
}
// Reconstruction filter
half4 FragReconstruction(VaryingsMultitex i) : SV_Target
{
// Color sample at the center point
const half4 c_p = SAMPLE_TEXTURE2D_X(_MainTex, sampler_LinearClamp, i.uv0);
// Velocity/Depth sample at the center point
const half3 vd_p = SampleVelocity(i.uv1);
const half l_v_p = max(length(vd_p.xy), 0.5);
const half rcp_d_p = 1.0 / vd_p.z;
// NeighborMax vector sample at the center point
const half2 v_max = SAMPLE_TEXTURE2D_X(_NeighborMaxTex, sampler_LinearClamp, i.uv1 + JitterTile(i.uv1)).xy;
const half l_v_max = length(v_max);
const half rcp_l_v_max = 1.0 / l_v_max;
// Escape early if the NeighborMax vector is small enough.
if (l_v_max < 2.0) return c_p;
// Use V_p as a secondary sampling direction except when it's too small
// compared to V_max. This vector is rescaled to be the length of V_max.
const half2 v_alt = (l_v_p * 2.0 > l_v_max) ? vd_p.xy * (l_v_max / l_v_p) : v_max;
// Determine the sample count.
const half sc = floor(min(_LoopCount, l_v_max * 0.5));
// Loop variables (starts from the outermost sample)
const half dt = 1.0 / sc;
const half t_offs = (GradientNoise(i.uv0) - 0.5) * dt;
half t = 1.0 - dt * 0.5;
half count = 0.0;
// Background velocity
// This is used for tracking the maximum velocity in the background layer.
half l_v_bg = max(l_v_p, 1.0);
// Color accumlation
half4 acc = 0.0;
UNITY_LOOP while (t > dt * 0.25)
{
// Sampling direction (switched per every two samples)
const half2 v_s = Interval(count, 4.0) ? v_alt : v_max;
// Sample position (inverted per every sample)
const half t_s = (Interval(count, 2.0) ? -t : t) + t_offs;
// Distance to the sample position
const half l_t = l_v_max * abs(t_s);
// UVs for the sample position
const float2 uv0 = i.uv0 + v_s * t_s * _MainTex_TexelSize.xy;
const float2 uv1 = i.uv1 + v_s * t_s * _VelocityTex_TexelSize.xy;
// Color sample
const half3 c = SAMPLE_TEXTURE2D_X_LOD(_MainTex, sampler_LinearClamp, uv0, 0).rgb;
// Velocity/Depth sample
const half3 vd = SampleVelocity(uv1);
// Background/Foreground separation
const half fg = saturate((vd_p.z - vd.z) * 20.0 * rcp_d_p);
// Length of the velocity vector
const half l_v = lerp(l_v_bg, length(vd.xy), fg);
// Sample weight
// (Distance test) * (Spreading out by motion) * (Triangular window)
const half w = saturate(l_v - l_t) / l_v * (1.2 - t);
// Color accumulation
acc += half4(c, 1.0) * w;
// Update the background velocity.
l_v_bg = max(l_v_bg, l_v);
// Advance to the next sample.
t = Interval(count, 2.0) ? t - dt : t;
count += 1.0;
}
// Add the center sample.
acc += half4(c_p.rgb, 1.0) * (1.2 / (l_v_bg * sc * 2.0));
return half4(acc.rgb / acc.a, c_p.a);
}
#endif // __MOTION_BLUR__